Support of this work by the National Science Foundation [CHE8711736 (PC), CHE9021069 (PC) and DMR89-14087 (MJN)] and the Petroleum Research Fund of the American Chemical Society (PRF21392-AC6-C) (PC) is gratefully acknowledged.

References

Bu, X., Coppens, P., Lederle, B. \& Naughton, M. (1991). Acta Cryst. C47, 2082-2085.
Bu, X., Coppens, P. \& Naughton, M. (1990). Acta Cryst. C46, 1609-1612.
Bu, X., Su, Z. \& Coppens, P. (1991). Acta Cryst. C47, 279282.

Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Enraf-Nonius (1985). Structure Determination Package. EnrafNonius, Delft, The Netherlands.

Kini, A. M., Geiser, U., Wang, H. H., Carlson, K. D., Williams, J. M., Kwok, W. K., Vandervoort, K. G., Thompson, J. E., Stupka, D. L., Jung, D. \& Whangbo, M. H. (1990). Inorg. Chem. 29, 2555.
Kobayashi, H., Kato, R., Mori, T., Kobayashi, A., Sasaki, Y., Saito, G. \& Inokuchi, H. (1983). Chem. Lett. p. 759.
Kobayash, h., Mori, T., Kato, R., Kobayashi, A., Sasaki, Y., Saito, G. \& Inokuchi, H. (1983). Chem. Lett. p. 581.
Saito, G., Urayama, H., Yamochi, H. \& Oshima, K. (1988). Synth. Met. 27, A331.
Wang, H. H., Carlson, K. D., Geiser, U., Kini, A. M., Schultz, A. J., Williams, J. M., Montgomery, L. K., Kwok, W. K., Welp, U., Vandervoort, K. G., Boryschuk, S. J., Strieby Crouch, A. V., Kommers, J. M., Watkins, D. M., Schirber, J. E., Overmyer, D. L., Jung, D., Novoa, J. J. \& Whangbo, M.-H. (1991). Synth. Met. 42, 1983-1990.
Williams, J. M., Wang, H. H., Emge, T. J., Geiser, U., Beno, M. A., Leung, P. C. W., Carlson, K. D., Thorn, R. J., Schultz, A. J. \& Whangbo, M. H. (1987). Progress in Inorganic Chemistry, Vol. 35, edited by S. Lippard, pp. 51-218. New York: John Wiley.

Structures of Two 5-Hydroxytryptamine Receptor Agonists

By Barbara J. Kirby, Alan S. McAlpine, Lindsay Sawyer* and Paul Taylor
Department of Biochemistry, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland

and Alexander J. Blake
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 30 October 1990; accepted 16 August 1991)

Abstract

Methoxy-2-(n-propylamino)tetralin (8MeO-PAT) hydrochloride, $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}^{+} . \mathrm{Cl}^{-}, M_{r}=$ 255.8, monoclinic, $\quad P 2_{1} / n, \quad a=9.2229$ (4),$\quad b=$ 8.8051 (6), $c=17.6475$ (7) $\AA, \beta=93.513$ (50$)^{\circ}, V=$ $1430.4 \AA^{3}, \quad Z=4, \quad D_{x}=1.188 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=$ $1.54184 \AA, \quad \mu=22.59 \mathrm{~cm}^{-1}, \quad F(000)=552, \quad T=$ 298 K , final $R=0.0542$ with 1722 independent data. 2-(Di- n-propylamino)-8-hydroxytetralin $\quad(8 \mathrm{OH}-$ DPAT) hydrochloride, $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}^{+} . \mathrm{Cl}^{-}, M_{r}=283.8$, monoclinic, $P 2_{1} / n, a=9.9587$ (7), $b=13.5746$ (6), c $=12.1558$ (6) $\AA, \beta=94.537(6)^{\circ}, \quad V=1638.1 \AA^{3}, Z$ $=4, D_{x}=1.151 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA, \mu$ $=19.00 \mathrm{~cm}^{-1}, F(000)=616, T=298 \mathrm{~K}$, final $R=$ 0.1781 with 1550 independent data. The structure solution of 8 OH -DPAT was hindered by the poor quality of the one crystal obtained. $8 \mathrm{MeO}-\mathrm{PAT}$ and 8 OH -DPAT are agonists of the 5 -hydroxytryptamine ($5-\mathrm{HT}$) receptor. When the aromatic rings of the two structures are superimposed, the propyl arm of

^[* Author to whom correspondence should be addressed.]

0108-2701/92/030519-05\$03.00

8MeO-PAT lies in the same position as the $\mathrm{C}(11)$ to $\mathrm{C}(13) \mathrm{arm}$ of 8 OH -DPAT. However, the torsion angles at $\mathrm{N}(1)-\mathrm{C}(11)$ show a 20° deviation. 8 OH DPAT packs in an infinite stack with pairs of molecules related by an inversion centre. The Cl ion in $8 \mathrm{MeO}-\mathrm{PAT}$ forms salt bridges that influence molecular packing. Adjacent molecules are rotated through 180° in the same plane.

Introduction. Knowledge of the conformations of neurotransmitters, peptide hormones and drugs is a prerequisite in understanding their mode of action. Such structures provide a starting point in the design of new agonists (a ligand binding tightly to a receptor and promoting the desired response) or antagonists (a ligand blocking the desired response), since the three-dimensional structures of the receptors for the most part remain elusive.

8-Methoxy-2-(n-propylamino)tetralin ($8 \mathrm{MeO}-\mathrm{PAT}$) is an analogue of 2 -(di- n-propylamino)-8-hydroxytetralin (8OH-DPAT) which is an agonist acting (c) 1992 International Union of Crystallography
selectively at the $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor subtype (Fig. 1). This receptor is believed to be involved in physiological functions, such as thermoregulation, adenylate cyclase modulation and blood pressure, in the central nervous system (Peroutka, 1988).

Experimental. Crystals of $8 \mathrm{MeO}-\mathrm{PAT}$ and $8 \mathrm{OH}-$ DPAT were grown by isothermal distillation of ether into methanol solutions. Laminar crystals of each were characterized by Weissenberg photography. Only one crystal of 8OH-DPAT was available. The data sets were collected on a Stoë STADI-4 diffractometer using graphite-monochromated $\mathrm{Cu} K \alpha$ radiation.

The orientation matrix used for $8 \mathrm{MeO}-\mathrm{PAT}$ data collection was derived from 11 reflections with $30<$ $2 \theta<35^{\circ}$, and accurate unit-cell dimensions were determined using 24 reflections measured at $\pm \omega$ in a $30<2 \theta<32^{\circ}$ scan range. The orientation matrix used for $8 \mathrm{OH}-$ DPAT data collection was derived from eight reflections with $31<2 \theta<34^{\circ}$, whilst

(a)

(b)

(c)

Fig. 1. Numbering scheme for atoms in (a) 5OH-DPAT, (b) $8 \mathrm{MeO}-\mathrm{PAT}$ and (c) 8OH-DPAT.

Table 1. Experimental data

	$8 \mathrm{MeO}-\mathrm{PAT}$	8OH-DPAT
Crystal dimensions (mm)	$0.13 \times 0.50 \times 0.38$	$0.43 \times 0.18 \times 0.33$
Reflections to determine lattice parameters	24	33
Max. $\sin \theta / \lambda\left(\AA^{-1}\right)$	0.5617	0.5567
Scan technique	$\omega / 2 \theta$	$\omega / 2 \theta$
$h k l$ range h	-10,10	-11,11
k	0,9	0,11
l	0,19	0,13
Standard reflections	130, 116, 116	204, 321, 124
Total data measured	2182	2142
Data used in refinement [F>6\%(F)]	1722	1550
Parameters refined	180	144
R	0.0542	0.1781
${ }^{\boldsymbol{w}}$ R	0.0670	-
S	1.288	2.852
Weighting scheme parameter $x \text { in } w^{-1}=\sigma^{2}(F)+x F^{2}$	0.004646	-
Max. Δ / σ, last cycle	0.144	1.654
Final difference map (e \AA^{-3}) max.	0.399	0.882
min.	-0.260	-0.637

accurate unit-cell dimensions were determined using 33 reflections measured at $\pm \omega$ in the same 2θ scan range.
In both cases three intensity control reflections were measured every 2 h and no significant variation in intensity occurred during data collection. However, the peak shapes for the 80 H -DPAT crystal were unsatisfactory and therefore a damaged crystal was suspected. All the observed $[I>3 \sigma(1)]$ reflection intensities were corrected for Lorentz and polarization effects but not for absorption or extinction.

A trial position for the Cl atom of $8 \mathrm{MeO}-\mathrm{PAT}$ was found from a Patterson synthesis using SHELX76 (Sheldrick, 1976). In the resulting difference Fourier map all non-H atoms except those of the propylamino group were located. This part of the molecule was identified in subsequent difference Fourier maps. Non-H atoms were refined anisotropically (on F), with H atoms, which were added in their calculated positions, allowed to ride on the atoms to which they were attached. The isotropic temperature factors were refined, with fixed unit-site occupancies, for the majority of H atoms. However, in the case of $\mathrm{C}(12)$ and $\mathrm{C}(13)$, the H atoms were refined with fixed isotropic thermal parameters.

A trial position for the Cl atom of 8 OH -DPAT was found from a Patterson map using SHELX76 (Sheldrick, 1976), but a difference Fourier map calculated using this Cl was uninterpretable. A directmethods approach using SHELXS86 (Sheldrick, 1986) located non-H atoms with the exception of the dipropylamino moiety. The structure was refined anisotropically by least squares (on F). Alternative positions for $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$ were tried by allowing half occupancies of both sites (these have been removed from Fig. 3 for the sake of clarity), but this model did not reduce the R factor beyond its final value of 0.1782 . The data-collection output showed splitting of some peaks, consistent with a split (or possibly twinned) crystal, this resulted in the

Table 2. Fractional coordinates and equivalent isotropic thermal parameters with e.s.d.'s for 8MeO-PAT and 8OH-DPAT

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }} / U_{\text {iso }}\left(\AA^{2}\right)$
8MeO-PAT				
$\mathrm{Cl}(1)$	0.13545 (78)	0.14446 (8)	0.19762 (4)	0.0560 (5)
C(8)	0.5460 (3)	0.1811 (3)	-0.04343 (14)	0.0427 (14)
C(7)	0.6635 (3)	0.1004 (3)	-0.06686 (16)	0.0527 (17)
C(6)	0.7867 (3)	0.0886 (4)	-0.01817 (18)	0.0593 (18)
C(5)	0.7932 (3)	0.1558 (4)	0.05158 (18)	0.0588 (19)
$\mathrm{C}(10)$	0.6736 (3)	0.2378 (3)	0.07585 (15)	0.0473 (15)
C(4)	0.6818 (3)	0.3099 (4)	0.15356 (17)	0.0600 (18)
C(3)	0.5317 (3)	0.3313 (3)	0.18427 (16)	0.0520 (16)
$\mathrm{C}(2)$	0.4348 (3)	0.4157 (3)	0.12595 (14)	0.0405 (13)
C(1)	0.4126 (3)	0.3269 (3)	0.05184 (14)	0.0407 (14)
$\mathrm{O}(8)$	0.41900 (19)	0.20087 (23)	-0.08653 (10)	0.0521 (11)
$\mathrm{N}(2)$	0.29168 (22)	0.44585 (23)	0.15895 (11)	0.0420 (11)
C(9)	0.5493 (3)	0.2495 (3)	0.02850 (14)	0.0399 (13)
C (14)	0.4065 (4)	0.1313 (4)	-0.15965 (17)	0.0628 (19)
C(11)	0.1812 (3)	0.5283 (4)	0.10783 (17)	0.0585 (18)
C(12)	0.0527 (4)	0.5713 (5)	0.14748 (20)	0.0774 (23)
C(13)	-0.0613 (4)	0.6513 (6)	0.0976 (3)	0.097 (3)
H(71)	0.6594	0.0471	-0.1221	0.1140
H(61)	0.8792	0.0254	-0.0357	0.0677
H(51)	0.8907	0.1460	0.0884	0.0730
H(41)	0.7459	0.2378	0.1922	0.0671
H(42)	0.7336	0.4195	0.1502	0.0751
H(31)	0.5415	0.3961	0.2363	0.0795
H(32)	0.4847	0.2217	0.1952	0.0612
H(21)	0.4871	0.5212	0.1125	0.0611
H(11)	0.3758	0.4046	0.0074	0.0771
H(12)	0.3305	0.2414	0.0588	0.0668
H(22)	0.2455	0.3379	0.1737	0.0956
H(23)	0.3118	0.5131	0.2097	0.0613
H(141)	0.3005	0.1522	-0.1871	0.0860
H(142)	0.4255	0.0104	-0.1562	0.1211
H(143)	0.4885	0.1836	-0.1922	0.1007
H(111)	0.1473	0.4422	0.0699	0.0953
H(112)	0.2341	0.6197	0.0794	0.0967
8OH-DPAT				
$\mathrm{Cl}(1)$	0.0662 (3)	0.19459 (24)	0.04771 (24)	0.0557 (19)
$\mathrm{N}(1)$	0.2931 (15)	0.3392 (15)	0.1591 (14)	0.131 (14)
$\mathrm{O}(1)$	0.4566 (16)	0.3621 (13)	-0.2217 (15)	0.172 (15)
C(1)	0.3558 (21)	0.3960 (18)	-0.0263 (22)	0.155 (21)
C(2)	0.3058 (21)	0.4272 (17)	0.0876 (18)	0.129 (18)
C(3)	0.1822 (22)	0.4847 (17)	0.0720 (21)	0.141 (20)
C(4)	0.2004 (20)	0.5766 (20)	0.0038 (19)	0.144 (20)
C(5)	0.2284 (14)	0.6174 (11)	-0.1947 (19)	0.142 (20)
C(6)	0.2803 (14)	0.5956 (11)	-0.2951 (19)	0.138 (20)
C(7)	0.3580 (14)	0.5111 (11)	-0.3054 (19)	0.143 (21)
C(8)	0.3838 (14)	0.4484 (11)	-0.2153 (19)	0.138 (21)
$\mathrm{C}(9)$	0.3319 (14)	0.4703 (11)	-0.1148 (19)	0.119 (17)
$\mathrm{C}(10)$	0.2542 (14)	0.5548 (11)	-0.1045 (19)	0.136 (21)
C(11)	0.207 (3)	0.341 (3)	0.2531 (24)	0.145 (5)
C(11)	0.284 (5)	0.397 (4)	0.259 (5)	0.145 (5)
$\mathrm{C}(12)$	0.249 (4)	0.426 (3)	0.334 (3)	0.145 (5)
C(12)	0.150 (5)	0.350 (4)	0.323 (5)	0.145 (5)
C(13)	0.180 (4)	0.444 (3)	0.440 (3)	0.145 (5)
$\mathrm{C}\left(13^{\prime}\right)$	0.140 (5)	0.380 (4)	0.418 (5)	0.145 (5)
C(14)	0.424 (4)	0.280 (3)	0.156 (4)	0.145 (5)
C(14)	0.913 (6)	0.219 (5)	-0.302 (5)	0.145 (5)
C(15)	0.417 (4)	0.191 (3)	0.246 (4)	0.145 (5)
$\mathrm{C}\left(15^{\prime}\right)$	0.929 (5)	0.324 (5)	-0.316 (5)	0.145 (5)
C(16)	0.548 (3)	0.138 (3)	0.234 (3)	0.145 (5)
$\mathrm{C}\left(16^{\prime}\right)$	0.918 (5)	0.434 (4)	-0.305 (4)	0.145 (5)

failure of the structure to refine satisfactorily and the high $(\Delta / \sigma)_{\text {max }}$ value (Table 1).

Experimental data for both compounds are summarized in Table 1. The program CALC (Gould \& Taylor, 1983) was used to provide the molecular geometry data presented in Table 3. Diagrams were prepared using PLUTO (Motherwell, 1972) and an interactive version of ORTEP (Johnson, 1965; Mallinson \& Muir, 1985). Atomic scattering factors

Table 3. Selected angles and torsion angles $\left({ }^{\circ}\right)$ for 8MeO-PAT and 8OH-DPAT

$8 \mathrm{MeO}-\mathrm{PAT}$			
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(8)$	124.06 (23)	$\mathrm{C}(8)-\mathrm{O}(8)-\mathrm{C}(14)$	117.85 (21)
$\mathrm{O}(8)-\mathrm{C}(8)-\mathrm{C}(9) \quad 1$	114.74 (21)	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(11)$	115.62 (20)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2) \quad 1$	109.19 (24)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	117.87 (22)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1) \quad 1$	111.95 (21)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(1)$	122.95 (23)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(2) \quad 1$	108.63 (20)	$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	112.1 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2) \quad 1$	110.38 (20)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	113.5 (3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9) \quad 1$	113.17 (21)		
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(8)-\mathrm{C}(14)$	1.2 (4)	$\mathrm{C}(10)-\mathrm{C}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	-52.7 (3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{O}(8)-\mathrm{C}(14)$	-178.48 (23)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	61.9 (3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	-175.98 (24)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(2)$	-175.94 (21)
$\mathrm{O}(8)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-179.07 (22)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	-40.4 (3)
$\mathrm{O}(8)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	3.7 (3)	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	- 161.54 (20)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(4)$	179.3 (3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(11)$	-179.51 (22)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(4)-\mathrm{C}(3)$	- 154.8 (3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(11)$	-56.4 (3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(4)-\mathrm{C}(3)$	24.3 (4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	-171.99 (22)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(1)$	175.07 (25)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	10.9 (3)
$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	179.87 (25)	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	-172.31 (24)
$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(1)$	-3.0 (4)	$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-178.9 (3)
80H-DPAT			
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)$	121.4 (19)	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	122.5 (17)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}\left(11^{\prime}\right)$	93.7 (26)	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	117.5 (16)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(14)$	107.0 (21)	$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	116.3 (17)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(14)$	124.9 (24)	$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	123.6 (17)
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(14)$	114.7 (29)	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(5)$	121.1 (17)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	114.5 (19)	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	118.9 (17)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	110.3 (18)	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	110.6 (25)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.3 (18)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	122.0 (29)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	110.7 (19)	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	106.6 (29)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	112.0 (20)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	102.1 (31)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	112.78 (19)	$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{C}\left(16^{\prime}\right)$	163.3 (55)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	-159.2 (22)	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	177.0 (18)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	- 34.4 (29)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	- 58.4 (25)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	165.4 (27)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	54.5 (26)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-69.8 (29)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(5)$	153.8 (19)
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	48.2 (26)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	-26.4 (27)
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	173.0 (23)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(4)$	179.8 (18)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	-56.1 (32)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(1)$	178.0 (17)
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$) 91.4 (34)	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	-2.4 (26)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	173.0 (24)	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	- 178.1 (17)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)$) 21.6 (41)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	175.6 (18)
$\mathrm{C}\left(11^{\prime}-\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)\right.$) 70.6 (39)	$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(4)$	4.9 (29)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	161.9 (18)	$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	- 175.3 (18)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	35.6 (26)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(4)$	-179.8 (18)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	175.5 (17)	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	- 178.7 (27)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	-9.1 (29)		

were from International Tables for X-ray Crystallography (1974, Vol. IV). The final atomic parameters for $8 \mathrm{MeO}-\mathrm{PAT}$ and 80 H -DPAT are given in Table 2.*

Discussion. Crystallization of a racemic mixture of 8OH-DPAT was hindered as it easily oxidized in solution. One crystal was obtained from one sample and further crystallization attempts were unsuccessful. A previous crystal structure of $8 \mathrm{OH}-\mathrm{DPAT} . \mathrm{HBr}$ (Karlsson, Petterson, Sundell, Arvidsson \& Hacksell, 1988) is of one enantiomer, (+)-8OH-DPAT.HBr, and shows two forms, differing in the position of the propyl side chains, in one asymmetric unit. A structure with the hydroxyl group transferred to C(5),

[^1]5OH-DPAT.HCl [(+)-2-dipropylamino-5-hydroxytetralin hydrochloride], is also found to exist in two forms within the asymmetric unit, again differing in the positions of the propyl side chains (Giesecke, 1980). When $50 H-D P A T$ was methylated on C(3), (-)-C(3)Me-5OH-DPAT.HBr, only one form of one enantiomer was present in the asymmetric unit (Johansson, Nilsson, Karlen, Hacksell, Svensson, Carlsson, Kenne \& Sundell, 1987). We tried to model the mobility of the propyl side chains of $8 \mathrm{OH}-\mathrm{DPAT}$ by assigning half occupancies to $\mathrm{C}(11)-\mathrm{C}(16)$ in their alternative positions, but this did not improve the model.
The bond lengths for both $8 \mathrm{MeO}-\mathrm{PAT}$ and $8 \mathrm{OH}-$ DPAT were as expected. Selected bond and torsion angles for both crystal structures are given in Table 3. A comparison of the crystal structure of $8 \mathrm{MeO}-$ PAT with that of 5OH-DPAT (Giesecke, 1980), was made. Superimposing the aromatic rings clearly shows the ring pucker of the non-aromatic moiety such that only four out of the six C atoms in the non-aromatic ring superimpose. $\mathrm{C}(3)$ of $8 \mathrm{MeO}-\mathrm{PAT}$ and the equivalent C atom of 5OH-DPAT (Fig. 1) lie 0.9 and $0.7 \AA$ respectively out of the plane of the aromatic rings (Fig. 2). In both cases the N atom lies in the plane of $\mathrm{C}(3)$ resulting in similar angles at $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ and $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)$ (Table 3). The propyl group of $8 \mathrm{MeO}-\mathrm{PAT}$ sits in the same

(a)

(b)

Fig. 2. Perspective drawing of (a) $8 \mathrm{MeO}-\mathrm{PAT}$ and (b) $8 \mathrm{OH}-$ DPAT. Non-H atoms are shown as 50% probability thermal ellipsoids; Cl, O and N atoms are shaded.
position as one of the two 50 H -DPAT propyl groups. However, the atoms do not superimpose.
When the aromatic rings of 8 OH -DPAT and 5OH-DPAT are superimposed, the positions of the N atoms again differ, resulting in a displacement of the propyl side chains, and the angles $\mathrm{C}(11)-\mathrm{N}(1)-$ $\mathrm{C}(14)$ differ by 12° (Table 3). This is probably as a result of the poor model for 80 H -DPAT.
As expected, superimposing $8 \mathrm{MeO}-\mathrm{PAT}$ and $8 \mathrm{OH}-$ DPAT gives a similar arrangement to those of each individually superimposed on $5 \mathrm{OH}-\mathrm{DPAT}$. However, superimposing along the $\mathrm{N}(1)-\mathrm{C}(11)$ bond shows a deviation of 20° for the position of $\mathrm{C}(12)$ when viewed from the $C(11)$ atom.
The molecular packing of $8 \mathrm{MeO}-\mathrm{PAT}$ is shown in Fig. 3. Adjacent molecules packed in the same plane are rotated through 180° and sit head-to-tail, i.e. the propyl arm of one molecule points towards the methoxy group on the next. As a result, the methyl group is directed away from the non-aromatic ring, given a torsion angle of 1.2° between $\mathrm{C}(7), \mathrm{C}(8), \mathrm{O}(8)$ and $\mathrm{C}(14)$. There is no apparent hydrogen bonding between the O and the nearest H , on $\mathrm{C}(13) . \pi-\pi$ ring stacking is present with a $3.7 \AA$ spacing between the planes. The benzyl rings are displaced from one plane to the next by about $1.5 \AA$ and are inverted. The position of the Cl ion influences the molecular packing of $8 \mathrm{MeO}-\mathrm{PAT}$ since salt bridges are formed between $\mathrm{N}-\mathrm{H}$ and Cl , with an N to Cl distance of $3.12 \AA$. The H associated with Cl links with the adjacent molecule's $\mathrm{H}-\mathrm{N}$ forming a chain through the crystal.

(a)

(b)

Fig. 3. Molecular packing of (a) 8MeO-PAT (projection is down the c axis) and (b) 8OH-DPAT (projection is down the b axis).

The molecular packing of 8 OH -DPAT showed that there are few close contacts between molecules. The molecules lie in an infinite stack with pairs of molecules related by inversion centres. The propyl arms are badly disordered; this hindered the search for close contacts between the molecules. It is possible that there is a similar salt-bridge effect to that found in $8 \mathrm{MeO}-\mathrm{PAT}$ although the distances are a little long. The $\mathrm{C}(11), \mathrm{C}(12)$ and $\mathrm{C}(13)$ propyl chain is closer to the nearest Cl ion than the $\mathrm{C}(14)-\mathrm{C}(16)$ propyl chain; the H atoms on $\mathrm{C}(11)$ come within $3 \AA$ of the Cl ion. The other closest atoms to the Cl ion are the H atoms bound to $\mathrm{C}(6)$ and $\mathrm{C}(7)$.

We would like to thank Drs I. Dawson, R. L. Jones and N. H. Wilson for helpful discussions and supplying the crystals. We also acknowledge SERC for financial support.

References

Giesecke, J. (1980). Acta Cryst. B36, 110-114.
Gould, R. O. \& Taylor, P. (1983). CALC. An interactive program for molecular geometry. Univ. of Edinburgh, Scotland.
Johansson, A. M., Nilsson, J. L. G., Karlen, A., Hacksell, U., Svensson, K., Carlsson, A., Kenne, L. \& Sundell, S. (1987). J. Med. Chem. 30, 1135-1144.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Karlsson, A., Petterson, C., Sundell, S., Arvidsson, L. E. \& Hacksell, U. (1988). Acta Chem. Scand. B42, 231-236.
Mallinson, P. D. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Motherwell, W. D. S. (1972). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England. Peroutka, S. J. (1988). Annu. Rev. Neurosci. 11, 45-60.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

Acta Cryst. (1992). C48, 523-525

Mesoionic Compounds. 2. Structure of 2-Morpholino-5-propyl-1,3-dithiolium-4-thiolate

By Kung-Kal Cheung*
Department of Chemistry, University of Hong Kong, Bonham Road, Hong Kong

Sérgio Galembeck
Universidade de São Paulo, FFCL-RP, Campus Universitário, 14049 Ribeirão Preto, SP, Brazil
Joseph Miller
Universidade de São Paulo, FFCL-RP, Campus Universitário, 14049 Ribeirão Preto, SP, Brazil, Universidade de São Paulo, IQ, Cidade Universitária, Cx. Postal 20780, 01498 São Paulo, SP, Brazil, and Universidade Federal da Paraiba, LTF, Campus Universitário I, Cx. Postal 5009, 58059 João Pessoa, PB, Brazil

Magali B. de Oliveira
Universidade de São Paulo, FFCL-RP, Campus Universitário, 14049 Ribeirão Preto, SP, Brazil
Arnaldo B. Pereira
Universidade de São Paulo, FCF-RP, Campus Universitário, 14049 Ribeirão Preto, SP, Brazil
and Alfredo M. Simas
Universidade Federal de Pernambuco, DQF, Cidade Universitária, 50739 Recife, PE, Brazil
(Received 11 December 1990; accepted 16 August 1991)

Abstract. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NOS}_{3}, \quad M_{r}=261.43$, monoclinic, $P 2_{1} / c, a=7.511$ (1), $b=10.088$ (1), $c=17.383$ (1) \AA,

[^2]0108-2701/92/030523-03\$03.00
$\beta=112.41(1)^{\circ}, \quad V=1217.7(4) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.426 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \mu=5.6 \mathrm{~cm}^{-1}$, $F(000)=552, T=297 \mathrm{~K}, R=0.030$ for 1339 reflections with $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$. In the pentatomic ring

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54590 (27 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * Author to whom correspondence should be addressed.

